Realize Your Product Promise®

Clinical Applications Powered by Patient Specific Simulation

Michel Rochette Director of Research

3D simulation in clinics ?

Global Engineering Simulation Leader

Only software company focused solely on simulation with 45 years of simulation software experience

- Approx. 3,000 employees / 60+ sales offices on 3 continents
 - Network of sales channel partners in 40+ countries
 - 22 major development centers on 3 continents

2016 Revenues: \$980M Market Cap: \$10B

40,000 Total Customers

290,000 University Seats

200 Channel Partners

160 Industry Partners

SONY

JOHN DEERE

BOEING

United & Technologies

Including 97 of the top 100 Industrial Companies on the FORTUNE Global 500 315,000 Commercial Seats

ANSYS Research in Lyon

11 researchers (3 Senior, 8 PhD students)

Collaborative Research with Labs, Hospitals, Clinical SMEs and Medical Companies

2 Research Topics

Engineering Simulation embedded into Clinical Protocols

Reduced Order Modelling

Clinical Applications

Clinical Initiative Business Target: *'Pathology Specific Vertical Applications'*

3D simulation is used in any industry to drastically reduce product cost

In a few years 3D simulation will be embedded in clinical protocols and used by physicians for diagnostic and therapy

To create this huge business opportunity ANSYS develop Vertical Apps with partners

- **Developed** by / with medical software partners (start-up)
- Validated by early adopter clinicians with "large cohorts of patients"
- **Research protocol** with **ethical** committee review
- Certification: CE Marked and FDA Approved
- Communication helped by opinion leader clinicians
- **Marketed** (OEM) by partners:
 - Medical software vendors, medical device industry, medical imaging industry

Patient specific simulation part of medical protocols: 1 patient \rightarrow 1 simulation!

ANSYS Clinical Apps Partners

- Clinic
 - Customer needs
 - Patient Data, Research Protocol and Ethical Committee review
 - Publications in medicine journals
 - Leads to Clinical Departments of Medical Device and Imaging companies

Academia

- State of the Art and Management of PhD students
- Funded Research
- Publications in engineering journals

• SMEs

- Development of Vertical Apps
- CE Marking & FDA Approval facilitation
- Go to Market
- Medical Device and Medical Imaging Companies
 - Deployment for their internal needs
 - Deployment into clinical centers

A Virtuous Collaboration Circle

Optimizing Eye Laser Surgery Parameters (Optimeyes)

Partners:

- Optimo Medical AG (Clinical Software Vendor)
- University of Bern
- Hospital of Zurich

Vertical App: ophthalmologic surgery planning: from cornea tomography to laser cut parameters through biomechanical simulation

Optimeyes Video

Cerebral Aneurysm Repair Web Optimal Sizing Tool (WOST)

LINNC Conference in Paris WOST in action in front of 800 clinicians

Partners:

- Hospital of Montpellier,
- Sim&Cure (Clinical Software Vendor)

Vertical App: WEB Stent sizing tool deployment of a cage inside the aneurysm

IDsize Video 🔮 WOST-2.0.b9591.dev

WORK LIST CASE PLANIFICATION

NAME: Anonymized3 SERIES UID: 1.2.276.0.7230010.3.1.3.338144199.3280.1463740741.1187 SERIES DATE: 2014-05-22

IDsize Prospective case

IDsize Prospective case

Patient-specific computations = faster, cheaper and more accurate

Prof. Costalat (Head neuroradiology Department Montpellier Hospital): "Engineering simulation is a very promising technology to assist me when I'm working on my therapeutic planning. The results provided by simulation have proven to be reliable enough to help in the choice of the device."

Aortic Abdominal Aneurysm Repair EndoSim

Partners:

- Hospital of Rennes
- LTSI (Lab, Image Processing)
- Therenva (Clinical Software Vendor)

Vertical Apps:

- 1. Stiff Guidewire Introduction
- 2. Delivery System Introduction
- 3. Intra-operative assistance

Therenva Portfolio

- EndoSize case planning software
- EndoNaut 3D intra-operative navigation system
- EndoSim advanced simulation plug-ins for EndoSize/EndoNaut

Case planning solution for endovascular surgery

- EVAR, TEVAR, FEVAR, TAVI, PAD modules -

EndoNaut[®]

Intra-operative 3D Navigation

- > 3D Roadmap based on preoperative planning data extracted from EndoSize
- Compatible with any mobile C-arms
- Reduce X-ray dose and contrast agent
- Safer device positioning and deployment
- Low-cost solution for upgrading conventional \triangleright OR into 3D environments

Class IIb CE mark (received in April 2016) June 28, 2017

EndoSim Plug-ins for EndoSize Biomechanical Simulation-based Planning Aortic Abdominal Aneurysm Repair

EndoSim / EndoSize

EndoSim / EndoNaut

EndoNaut /EndoSim Clinical Benefits

Dr Adrien Kaladji (Vascular Surgeon Hospital of Rennes):

"Navigation within vascular structure is possible without iterative contrast injection. EndoSim-EndoNaut is fully compatible with the clinical workflow and offers a lot of information that were not available before and make endovascular imaging-based procedures much more easier."

Beating Heart

Image-Based Cardiac Hemodynamics

Digital Twin Example: Diabetic Foot Ulcer Prevention

Patient Specific Biomechanical Model of the Foot

28

Diabetic Foot Ulcer Prevention

• Challenge:

Real time and embedded system with complex non linear model:

- Each simulation takes about 2h30 on our simulation platform with a powerful desktop PC
- Too slow and too heavy for real time prevention of pressure ulcers embedded on a micro processor...
- Solution: Creation of a Reduced Order Model (ROM)

Reduced Order Model (ROM) Creation

- For the patient, acquisition of the pressure below his foot
- Lead to pressure fields for 75 time steps (from taligrade to digitigrade)
- Projection of these pressure fields in a base of 14 modes
- Computation of the deformation fields on the 75 time steps associated to the previous pressure fields.

Using the Reduced Order Model (ROM) for Ulcer Prevention

- For any pressure field (dynamic acquisition):
 - Projection of this pressure field in the base of n modes
 - Evaluation of the ROM for this input parameter (n scalar values)
- These 2 steps are quick and reliable
- Real time evaluation of the deformation field with respect to the pressure acquisition

文 上, 👗

Sensors in the Socks

31

ROM Evaluation in the IoT Environment

Realize Your Product Promise®

Questions

CONT.